Control of breathing and adaptation to high altitude in the bar-headed goose.

نویسندگان

  • Graham R Scott
  • William K Milsom
چکیده

The bar-headed goose flies over the Himalayan mountains on its migratory route between South and Central Asia, reaching altitudes of up to 9,000 m. We compared control of breathing in this species with that of low-altitude waterfowl by exposing birds to step decreases in inspired O(2) under both poikilocapnic and isocapnic conditions. Bar-headed geese breathed substantially more than both greylag geese and pekin ducks during severe environmental (poikilocapnic) hypoxia (5% inspired O(2)). This was entirely due to an enhanced tidal volume response to hypoxia, which would have further improved parabronchial (effective) ventilation. Consequently, O(2) loading into the blood and arterial Po(2) were substantially improved. Because air convection requirements were similar between species at 5% inspired O(2), it was the enhanced tidal volume response (not total ventilation per se) that improved O(2) loading in bar-headed geese. Other observations suggest that bar-headed geese depress metabolism less than low-altitude birds during hypoxia and also may be capable of generating higher inspiratory airflows. There were no differences between species in ventilatory sensitivities to isocapnic hypoxia, the hypoxia-induced changes in blood CO(2) tensions or pH, or hypercapnic ventilatory sensitivities. Overall, our results suggest that evolutionary changes in the respiratory control system of bar-headed geese enhance O(2) loading into the blood and may contribute to this species' exceptional ability to fly high.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions betwee...

متن کامل

Phylogenetic and structural analysis of the HbA (a/b) and HbD (a/b) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera)

Two species of waterfowl living at high altitude provide a prominent example of parallel adaptation at the molecular level. The bar-headed goose (Anser indicus) breeds at high elevations in central Asia and migrates across the Himalayas, where the partial pressure of oxygen (O2) is one-third of sea level. In South America, the distantly related Andean goose (Chloephaga melanoptera) is endemic t...

متن کامل

Respiratory mechanics and morphology of Tibetan and Andean high-altitude geese with divergent life histories.

High-altitude bar-headed geese (Anser indicus) and Andean geese (Chloephaga melanoptera) have been shown to preferentially increase tidal volume over breathing frequency when increasing ventilation during exposure to hypoxia. Increasing tidal volume is a more effective breathing strategy but is also thought to be more mechanically and metabolically expensive. We asked whether there might be dif...

متن کامل

Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose.

Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and ...

متن کامل

Altitude matters: differences in cardiovascular and respiratory responses to hypoxia in bar-headed geese reared at high and low altitudes.

Bar-headed geese (Anser indicus) fly at high altitudes during their migration across the Himalayas and Tibetan plateau. However, we know relatively little about whether rearing at high altitude (i.e. phenotypic plasticity) facilitates this impressive feat because most of what is known about their physiology comes from studies performed at sea level. To provide this information, a comprehensive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 293 1  شماره 

صفحات  -

تاریخ انتشار 2007